近日,北京大学电子学院张志勇-康宁团队以[Carbon-based cryoelectronics: graphene and carbon nanotube]¹为题在Chip上发表长篇综述论文,介绍了石墨烯和碳纳米管在低温电子学方向的应用和最新进展。第一作者为邓小松,通讯作者为康宁和张志勇。本文为特刊(Cryogenic Chips)文章之一,此特刊为Chip发起的首个特刊。Chip是全球唯一聚焦芯片类研究的综合性国际期刊,是入选了国家高起点新刊计划的「三类高质量论文」期刊之一。
随着人工智能,大数据和物联网等领域的高速发展,先进计算性能的需求不断攀升。近几年,基于量子计算和量子精密探测等研究热点,低温电子学领域受到了科研工作者的广泛关注。其次,在国际设备与系统路线图(2022 年版)(International Roadmap for Devices and Systems,IRDS,2022 Edition)中也指出低温电子学是提高计算能力的可能策略之一。与常规室温电子学相比,低温下工作的晶体管器件具有更优异的性能和更低的功耗。除了低温计算以外,低温电子学还在低温控制器、深空探测、低温生物、精密测量等领域发挥重要作用(图1)。
图1 | 低温电子学的优势和应用。
碳基材料已经在室温电子学领域展示出非凡的潜力,对其输运性质的深入理解推动了碳基低温电子学的发展。该综述首先阐述和分析了碳基材料在低温电子学领域的优势和特点,包括其优异的电学、热学、力学性能,小尺寸、强稳定性和超洁净界面等本征特性,进而对基于碳基材料的定制化加工技术的发展,以及体系和器件中的新奇量子力学效应进行了简要介绍。随后,基于不同的应用领域,该综述主要回顾了碳基电子器件近期在低温逻辑晶体管、可视化成像、超高灵敏度力学探测、霍尔传感器和低温参数放大器中的研究现况²⁻⁵(图2)。
图2 | 碳基低温电子学的最新进展²⁻⁵。
最后该综述讨论了碳基低温电子学目前存在的问题与挑战,展望了下一步的碳基低温电子学前进方向,如优化的材料合成,输运机制的深入理解和模型建立(其中碳纳米管密排阵列薄膜低温输运特性,如图3),单片三维集成技术和开发基于量子力学效应的新型器件等。碳基低温电子学的发展需要跨学科,各领域科研人员的共同努力。
图3 | 碳纳米管密排阵列薄膜的低温输运特性。
Carbon-based cryoelectronics: graphene and carbon nanotube¹
With the rapid development of artificial intelligence, big data, and the Internet of Things, the demand for advanced computing performance increasingly rises. In recent years, cryoelectronics has received extensive attention due to the research of quantum computing and superconductivity. International Roadmap for Devices and Systems (IRDS) 2022 Edition points out that cryoelectronics is one of the potential strategies to improve computing performance. Transistors operating at low temperature have higher performance and lower power consumption than those operating at room temperature. In addition to cryogenic computing, cryoelectronics plays an important role in areas such as cryogenic controllers, space industry, cryobiology, and precision measurements (Fig. 1).
Carbon-based materials have demonstrated extraordinary potential in room-temperature electronics, and a deeper understanding of their transport properties has prompted the development of carbon-based cryoelectronics. Firstly, the review analyzes the advantages and characteristics of carbon-based materials in the field of cyroelectronics, including the excellent electrical, thermal, and mechanical properties, intrinsic properties such as small dimensionality, strong stability, and ultra-clean interfaces, advanced customized processing techniques, and quantum mechanical effects in the system. Subsequently, the authors review the recent works of graphene and carbon nanotube on electronics based on different applications, such as low-temperature digital transistors, visual imaging, ultra-high-sensitivity mechanical probes, cryogenic Hall sensors, and low-temperature parametric amplifiers²⁻⁵ (Fig. 2).
Finally, the review discusses the current challenges of carbon-based cryoelectronics and gives the outlooks on carbon-based cryoelectronics, such as optimized material synthesis, deep understanding and modeling of the transport mechanism (the low-temperature transport properties of aligned-carbon nanotube films, as shown in Fig. 3), monolithic three-dimensional integration technology, and novel devices based on the quantum mechanical effects, and so on. Consequently, the development of carbon-based cryoelectronics requires the joint efforts of researchers in various fields.
参考文献:
1. Deng, X., Kang, N. & Zhang, Z. Carbon-based cryoelectronics: graphene and carbon nanotube. Chip 2 (2023).
2. Xie, Y. O. et al. Highly Temperature-stable carbon nanotube transistors and Gigahertz integrated circuits for cryogenic electronics. Adv. Electron. Mater. 7, 2100202 (2021).
3. Waissman, J. et al. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nat. Nano. 8, 569-574 (2013).
4. Urgell, C. et al. Cooling and self-oscillation in a nanotube electromechanical resonator. Nat. Phys. 16, 32-37 (2020).
5. Sarkar, J. et al. Quantum-noise-limited microwave amplification using a graphene Josephson junction. Nat. Nano. 17, 1147-1152 (2022).
文章链接:
https://www.sciencedirect.com/science/article/pii/S2709472323000278
作者简介
邓小松,北京大学电子学院2019级博士研究生在读,主要研究方向为基于碳纳米管的低温量子输运研究。
Xiaosong Deng is a Ph.D. student at the School of Electronics of Peking University. His research focuses on the quantum transport of carbon nanotubes at low temperature.
康宁,北京大学电子学院副研究员,近期研究聚焦在低维超导和纳米材料的物性和器件输运研究,开展基于低维电子体系及其复合结构的量子器件研制,代表性成果在Nature Materials, Physical Review Letters, Nano Letters, ACS Nano 等期刊上发表。
Ning Kang is an associate professor at the School of Electronics of Peking University. His current research focuses on experimental investigation of various quantum phenomena in low-dimensional materials and hybrid nanodevices with the goal of developing novel nanoscale electronic devices. His representative results have been published in Nature Materials, Physical Review Letters, Nano Letters, ACS Nano, and so on.
张志勇,北京大学博雅特聘教授,电子学院教授。主要从事碳基纳米电子学方面的研究,探索基于碳纳米管的CMOS集成电路、传感器和其他新型信息器件技术,并推进碳基信息器件技术的实用化发展。在Science,Nature Electronics与Physical Review Letters等学术期刊上发表SCI论文200余篇,被引用13000余次。
Zhiyong Zhang is a Peking University Boya Chair Professor and a professor at the School of Electronics of Peking University. He is the director of Key Laboratory for the Physics and Chemistry of Nanodevices, and the deputy director of Center for Carbon-based Electronics. His researches focus on carbon-based nanoelectronics, explores CMOS integrated circuits, sensors, and other novel information device technologies based on carbon nanotubes, and promotes the application and development of them. He has published more than 200 papers in Science, Nature Electronics, Physical Review Letters, and so on, with more than 13,000 citations.
关于Chip
Chip(ISSN:2772-2724,CN:31-2189/O4)是全球唯一聚焦芯片类研究的综合性国际期刊,已入选由中国科协、教育部、科技部、中科院等单位联合实施的「中国科技期刊卓越行动计划高起点新刊项目」,为科技部鼓励发表「三类高质量论文」期刊之一。
Chip期刊由上海交通大学出版,联合Elsevier集团全球发行,并与多家国内外知名学术组织展开合作,为学术会议提供高质量交流平台。
Chip秉承创刊理念: All About Chip,聚焦芯片,兼容并包,旨在发表与芯片相关的各科研领域尖端突破性成果,助力未来芯片科技发展。迄今为止,Chip已在其编委会汇集了来自14个国家的70名世界知名专家学者,其中包括多名中外院士及IEEE、ACM、Optica等知名国际学会终身会士(Fellow)。
Chip第二卷第四期已于2023年12月在爱思维尔Chip官网以金色开放获取形式(Gold Open Access)发布,欢迎访问阅读本期最新文章。
爱思唯尔Chip官网:
https://www.sciencedirect.com/journal/chip