电子书《Pytorch实用教程》第二版
tingsongyu.github.io/PyTorch-Tutorial-2nd/
本书以基础概念为基石,计算机视觉、自然语言处理和大语言模型为核心,推理部署框架为桥梁,皆在为读者提供面向项目落地的代码工程与理论讲解。本书整体分三部分,上篇:入门,中篇:应用,下篇:落地。
上篇
PyTorch基础。针对刚入门、非科班、本科生,提供PyTorch介绍,讲解开发环境的搭建,介绍PyTorch的数据、模型、优化、可视化等核心模块,最后利用所讲解的PyTorch知识点构建一套自己的代码结构,为后续的应用打下基础。
中篇
产业应用。经过上篇,磨了一把好刀,接下来就用它在各领域上大显身手。将会讲解三个主题,分别是计算机视觉(Computer Vision)、自然语言处理(Natural Language Processing)和大语言模型(Large Language Model)。
下篇
工业落地。有了工具,有了场景,接下来就要让它产生价值,变成可用的、好用的算法服务。因此,从pytorch这样一个训练框架、重框架中剥离出来进行部署、加速、量化是常见的方法。本章将介绍ONNX和TensorRT的原理与使用,同时借助TensorRT详细分析模型量化概念、PTQ和QAT量化实战与原理。
相信经过上、中、下篇的学习,可以帮助入门的同学少走很多弯路,快速掌握PyTorch,具备独当一面的能力,能依据实际场景选择算法模型,可以将模型部署应用,形成闭环,全流程打通。