2025年的机器学习和人工智能学习路线图
github.com/armankhondker/awesome-ai-ml-resources
一个github仓库,收集了用于学习人工智能和机器学习的免费资源。内容涵盖:
⭐AI/ML关键概念
列出了AI/ML的核心概念,如监督学习、无监督学习、强化学习、深度学习、自然语言处理、计算机视觉、生成对抗网络等,并附有相关链接供进一步学习。
⭐AI/ML构建模块
涉及学习AI/ML所需的基础知识,包括线性代数、概率统计、优化计算、Python编程、数据预处理、模型评估等。
⭐AI/ML角色
介绍了与AI/ML相关的多种职业角色,如机器学习工程师、数据科学家、ML/AI平台工程师等。
⭐AI/ML发展路线图
提供了一套系统的学习路径,从数学基础到实践经验,再到专业领域知识和MLOps,最后是研究和面试准备。
⭐课程、认证、书籍、工具与框架
分别列出了适合学习AI/ML的课程、认证项目、书籍、工具和框架,为学习者提供了丰富的学习资源。
⭐研究博客、应用博客、问题、社区、频道、新闻简报和必读论文
提供了AI/ML领域的研究博客、应用博客、实践问题、社区资源、YouTube频道、新闻简报以及必读论文,帮助学习者紧跟行业动态并深入研究。